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Abstract

To steer pretrained language models for downstream tasks, today’s post-training
paradigm relies on humans to specify desired behaviors. However, for models with
superhuman capabilities, it is difficult or impossible to get high-quality human
supervision. To address this challenge, we introduce a new unsupervised algo-
rithm, Internal Coherence Maximization (ICM), to fine-tune pretrained language
models on their own generated labels, without external supervision. On GSM8k-
verification, TruthfulQA, and Alpaca reward modeling tasks, our method matches
the performance of training on golden supervision and outperforms training on
crowdsourced human supervision. On tasks where LMs’ capabilities are strongly
superhuman, our method can elicit those capabilities significantly better than train-
ing on human labels. Finally, we show that our method can improve the training
of frontier LMs: we use our method to train an unsupervised reward model and
use reinforcement learning to train a Claude 3.5 Haiku-based assistant. Both the
reward model and the assistant outperform their human-supervised counterparts.

Figure 1: Our unsupervised algorithm (ICM) matches the performance of fine-tuning on golden
supervision and outperforms crowdsourced human supervision. We report average test accuracy
and variance across three runs on three classification tasks: mathematical correctness (GSM8K-
verification), common misconceptions (TruthfulQA), and helpfulness and harmlessness (Alpaca).

1 Introduction

Today’s post-training paradigm of pre-trained language models (LMs) still relies on humans to specify
desired behaviors, either through demonstrations or preference feedback [24, 14, 4]. However, as
tasks and model behaviors grow more complex, human supervision becomes increasingly unreliable:
LMs can learn to mimic mistakes in demonstrations [2] or exploit flaws in feedback [31]. How do we
train LMs to do tasks that are too difficult for humans to demonstrate or evaluate reliably?



We introduce a new approach to address this problem: we seek to elicit specific concepts or skills
from a pretrained model without any supervision, thus bypassing the limitations of human supervision.
Pretrained models have already learned rich representations about many important human concepts,
such as mathematical correctness, truthfulness, and helpfulness [7]. We should not need to teach LMs
much about these concepts in post-training—instead, we can just “elicit” them from LMs [9].

Concretely, given a task specified by a set of labeled inputs, our goal is to fine-tune a pretrained
model on its own generated labels to perform well on this task, without using any provided labels.

Our algorithm, Internal Coherence Maximization (ICM), does this by searching for a set of labels
that are logically consistent and mutually predictable according to the pretrained model. Specifically,
mutual predictability measures how likely the model can infer each label when conditioned on all
other labels. This intuitively encourages all labels to reflect a single concept according to the model.
Logical consistency further imposes simple constraints, thus blocking superficially predictable label
assignments, such as sharing the same label across all data points. Since finding the optimal label set
that maximizes this objective is computationally infeasible, ICM uses a search algorithm inspired by
simulated annealing [25] to approximately maximize it.

We show that ICM matches the performance of training on golden labels on TruthfulQA [20] and
GSM8K [11], and surpasses training on crowdsourced human labels on Alpaca [28]. Additionally,
on a task where LMs are strongly superhuman—identifying an author’s gender from a writing
sample1—ICM significantly outperforms the human supervision baseline.

Beyond standard benchmarks, we investigate ICM’s potential in improving frontier models by
training a version of Claude 3.5 Haiku without any human supervision. Specifically, we first use ICM
to train an unsupervised reward model (RM), then fine-tune the Claude 3.5 Haiku pretrained model
through reinforcement learning. Evaluations on Rewardbench [18] confirm that our unsupervised RM
outperforms its counterparts trained on production-grade high-quality human supervision. Further,
when assessed by Claude 3.5 Sonnet’s production-grade RM, our unsupervised assistant policy wins
60% of head-to-head comparisons against the policy trained with the human-supervised RM.

While prior work has studied unsupervised elicitation methods in simple toy settings [9], our work
demonstrates for the first time that it is possible to exceed human supervision in realistic settings at
production scale. By successfully training a Claude 3.5 Haiku-based assistant without any human
labels and achieving better performance than its human-supervised counterpart, we demonstrate that
unsupervised elicitation is practically useful for post-training frontier models into general assistants.

2 Methodology

2.1 Problem Statement

Typically, fine-tuning LMs for a task requires a labeled dataset D = {(xi, y
∗
i )}. However, for many

complex tasks, obtaining externally human-specified {y∗i } is difficult or impossible. Therefore, our
goal is to use the LM to estimate labels {yi}, based purely on the inputs {xi}.

In this following section, we explain how an LM can internally score the quality of {yi}, without
referencing external labels {y∗i }, and how to algorithmically maximize this score.

2.2 Scoring Function

We measure the quality of the model-generated label set with a scoring function composed of two
parts: how likely the model can infer each label when conditioned on all other labels (“mutual
predictability”) and how logically consistent the label set is as a whole.

Mutual Predictability. For each example xi, we calculate the probability of its label yi by putting
all other N − 1 labels in the context, and sum the log probabilities across all examples:

Pθ(D) =

N∑
i=0

logPθ(yi|xi, D \ (xi, yi))

1We use a widely-adopted academic dataset [27] for studying AI fairness [10, 21], which consists of self-
reported author information.
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Figure 2: ICM optimizes labels for logical consistency and mutual predictability. Top: an illustrative
example of mutual predictability scoring. Bottom: the searching process for labeling a new example.

where Pθ is the pretrained model.

Intuitively, this yields a high score if {(xi, yi)} collectively specify a single coherent concept for the
model — i.e. a labeling scheme where the model can confidently infer any label yi from the others.

However, mutual predictability alone allows some degenerate solutions due to artifacts of in-context
learning, e.g. assigning the same label to all data points can artificially inflate Pθ(D) as well.

Logical Consistency. To rule out degenerate solutions when maximizing mutual predictability alone,
we further enforce simple logical consistency on the label set. Specifically, we are given a logical
consistency function c(xi, yi, xj , yj) ∈ {0, 1} that checks whether the labels yi and yj on data points
xi and xj are logically consistent with each other. We use it to measure inconsistencies in our labels:

I(D) =

N∑
i=1

N∑
j=1

c(xi, yi, xj , yj)

Determining fine-grained logical consistency between each example is non-trivial; however, empirical
evidence suggests that even simple and general logical constraints suffice. For example, when judging
mathematical correctness, two solutions to the same math problem cannot be both labeled “True” if
their final answers are different. Another general, task-agnostic logical constraint that we use for
comparative datasets is asymmetry: when comparing two responses A and B, two claims “A > B”
and “B > A” cannot be both labeled “True”.

Overall Scoring Function. Combining the two terms, our scoring function is defined as follows:

U(D) = α · Pθ(D)− I(D)

where α is a hyperparameter to balance the strength of mutual predictability and logical consistency.

2.3 Our Algorithm

Finding the optimal label set that maximizes our scoring function is an integer programming problem,
which is computationally infeasible for realistic dataset sizes (103 < N < 106). ICM thus proposes
an efficient approximate algorithm 1, which is inspired by simulated annealing.

Starting from an empty labeled set, ICM initializes the search process with K randomly labeled
examples, then iteratively adds labels, one at a time. To add a label, ICM executes three steps: 1)
sample a new example, 2) decide its label while fixing any introduced inconsistencies, and 3) decide
whether to accept this new label based on the scoring function. In this way, ICM incrementally
expands the label set and improves the score.
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Algorithm 1 Internal Coherence Maximization (ICM)
Require: Unlabeled Dataset Dunlabel = {xi}. Labeled Dataset D = ∅. Pretrained model θ. Initial temperature

T0. Final temperature Tmin. Cooling rate β.
Ensure: Labeled Dataset {xi, yi}.
1: Randomly select and label K examples; update D. ▷ Initialization
2: D ← consistencyfix(D) ▷ Resolve initial inconsistencies via Alg. 2
3: for n = 1, · · · , N do
4: T ← max(Tmin,

T0
1+β log(n)

) ▷ Update temperature
5: Sample example xi ∼ {x1, · · · , xN}, ▷ Input selection
6: Assign label ŷi = argmax

y∈Y
Pθ(yi|xi, D \ {(xi, yi)})

7: Temporarily update D̂ ← D ∪ {(xi, ŷi)}
8: D̂ ← consistencyfix(D̂) ▷ Resolve inconsistencies via Alg. 2
9: ∆ = U(D̂)− U(D)

10: if ∆ > 0 then ▷ Accept new label
11: D ← D̂
12: else
13: if random(0,1) < exp(∆/T ) then ▷ Reject new label by probability
14: D ← D̂
15: end if
16: end if
17: end for

Initialization. We initialize the searching process with K randomly labeled examples. The choice
of K presents a trade-off. A large K (e.g., K = N ) introduces significant initial noise that hinders
subsequent convergence. Our preliminary experiments indicate that initializing all K = N examples
with random labels or zero-shot predictions often traps the model in a poor initialization. Conversely,
K = 0 reduces to a zero-shot setting, where the model lacks sufficient context to understand the task
and achieves near-random performance. Empirically, we find that a small number (e.g., K = 8),
often strikes a good balance by providing sufficient demonstrations while reducing initial noise [23].

Choose a New Example to Label. At each iteration, we select an example to label, which could
be either unlabeled or previously labeled. This allows us to dynamically correct earlier mistakes.
To fully leverage logical consistency, unlabeled examples that share consistency relationships with
existing labeled ones are prioritized by increasing their sampling weights (e.g., by a factor of 100).

Algorithm 2 ConsistencyFix
Require: Labeled Dataset D. Pretrained model θ. Max iteration M.
Ensure: Updated Labeled Dataset D.
1: for m = 1, · · · ,M do
2: if I(D) ̸= 0 then
3: Sample an inconsistent pair (xi, xj)
4: Enumerate consistent label options {(yi, yj)}
5: (ŷi, ŷj) = arg max

{(yi,yj)}
U(D ∪ {(xi, yi), (xj , yj)})

6: if U(D ∪ {(xi, ŷi), (xj , ŷj)}) > U(D) then
7: D ← D ∪ {(xi, ŷi), (xj , ŷj)}
8: end if
9: end if

10: end for

Fix Inconsistencies. Although U(D)
explicitly penalizes logical inconsis-
tencies, simply maximizing U(D)
during search still results in substan-
tial label inconsistencies. To mitigate
this issue, we actively resolve incon-
sistencies via Algorithm 2. Specifi-
cally, when an inconsistency between
a labeled data pair (xi, xj) arises, the
algorithm checks all consistent label
options for them and selects the com-
bination that maximizes U(D). Im-
portantly, after introducing a new la-
bel, we first fix its introduced incon-
sistencies and then measure U(D). Therefore, even if the new correct label contradicts all existing
consistently wrong labels, the algorithm would examine and fix the existing incorrect labels first,
instead of directly rejecting the new label.

Accept a New Label. We directly accept the new label if it improves U(D). Otherwise, inspired by
simulated annealing, the algorithm rejects it by a probability decided by two factors:

• Score Difference ∆: Larger decreases in U(D) increase the likelihood of rejection.

• Iteration: The rejection likelihood increases over time, making the algorithm increasingly selective.
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Table 1: Dataset examples. We unify the original tasks into classification tasks.
Dataset Example
TruthfulQA Question: What are some cities that get less rainfall than Boston?

Claim: San Francisco and Los Angeles get less rainfall than Boston.
I think this Claim is [True/False]

GSM8K Question: Arnel had ten boxes of pencils with the same number of pencils· · ·
Claim: Arnel shared 5 x 8 = 40 pencils with his friends. So, he had 10 + 40 = 50
pencils in all. Therefore, each box had 50/10 = 5 pencils inside. The answer is 5.
I think this Claim is [True/False]

Alpaca Query: Design a medium-level sudoku puzzle.
Response A: Done! Attached is a medium-level sudoku puzzle I designed.
Response B: A medium-level sudoku puzzle consists of 81 squares arranged in a 9 x
9 grid. The first step is to look for empty cells and assign the numbers 1 to 9 . . .
Claim: Response A is more helpful and harmless than Response B
I think this Claim is [True/False]

3 Experiment Setup

3.1 Datasets

• TruthfulQA (Truthfulness): For each question, multiple answer choices are provided in Truth-
fulQA. The task is to classify each answer choice as correct or incorrect.

• GSM8K-verification (Mathematical Correctness): For each question, we sample multiple
solutions from LMs. The task is to classify each solution as correct or incorrect. To determine
golden labels, we evaluate both final answers and intermediate reasoning steps. Specifically, we
prompt Claude 3.5 Sonnet to validate intermediate steps against the provided steps in GSM8K.

• Alpaca (Helpfulness and Harmlessness): For each user query, two assistant responses are
provided in Alpaca. The task is to classify which response is more helpful and harmless.

See Table 1 for dataset examples. We use accuracy as the main metric, which measures the agreement
between model predictions and golden benchmark labels. In particular, for Alpaca, we establish test
golden labels by doing majority voting over four human labels.

3.2 Baselines

We adopt the following four baselines in our experiments:

• Zero-shot indicates zero-shot prompting on pretrained models. In particular, we use a highly
optimized prompt that has been used for Anthropic’s pretrained models [3]. This prompt can convert
pretrained models into general assistant models, significantly improving zero-shot performance.

• Zero-shot (Chat) indicates zero-shot prompting on commercially post-trained chat models, which
have been through heavily optimized post-training. As an example, the llama-2 chat models are
post-trained on nearly 30K human demonstrations and 3 million human preference feedback [29].

• Golden Label indicates many-shot prompting or fine-tuning with golden labels, e.g., labels from
TruthfulQA and GSM8K.

• Human Label indicates many-shot prompting or fine-tuning with real-world human labels, e.g.,
labels from the Alpaca training set, which contains only one human annotation per datapoint.

For many-shot prompting, we use as many examples as possible that can fit into the model’s context,
e.g., 160 examples for Alpaca.

3.3 Models

In our experiments we use two open-weight models, Llama 3.1 8B and Llama 3.1 70B, and two
proprietary models, Claude 3 Haiku and Claude 3.5 Haiku. Unless stated otherwise, we always
use pretrained models that have received no additional training, i.e. no supervised fine-tuning on
demonstrations, RLHF, RL on outcomes, or any other post-training.
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Figure 3: Results with Llama 3 pretrained models, 8B for GSM8K, 70B for TruthfulQA and Alpaca.

Figure 4: Scaling properties of ICM on TruthfulQA. Figure 5: Results on poem ranking.

4 Experiments

4.1 Eliciting Capabilities on Common NLP Tasks

Finding 1: ICM matches the ceiling performance of golden supervision. As shown in Figure 3,
even with a highly optimized prompt, the zero-shot accuracy is still often no better than random guess-
ing on all three benchmarks. In comparison, ICM matches the performance of golden supervision on
TruthfulQA and GSM8K, despite not using any external labels.

Finding 2: ICM beats crowdsourced human supervision. On Alpaca, ICM substantially outper-
forms training with the preference labels annotated by real humans. This is particularly remarkable
because compared to truthfulness or mathematical correctness, helpfulness and harmlessness are
much more general and complex human concepts, such that even humans struggle to grasp them.
While frontier AI labs typically spend huge human effort on labeling data to externally specify these
concepts and align LMs, our results show the potential to align LMs by unsupervised elicitation.

Finding 3: ICM beats post-trained chat models. To investigate how ICM compares to conventional
post-training, we compare it to zero-shot prompting with commercial chat models. These models have
been heavily post-trained on diverse human supervision. As shown in Figure 3, ICM outperforms
conventional post-training by a large margin. Note that all three of our benchmarks are popular
measures of LLM capabilities, suggesting that production-level chat models are already heavily
optimized for performance on such tasks.

Finding 4: ICM scales up with pretrained model capabilities. Since ICM focuses on elicitation,
its effectiveness may naturally improve with pretrained model capabilities. We study the scaling prop-
erties of ICM on TruthfulQA and present results in Figure 4. While ICM moderately underperforms
the golden label baseline on Llama 8B, it performs comparably on LLama 70B.

We were initially very skeptical of these findings, because they seemed clearly too good to be true,
and suspiciously close to training with actual labels. To ensure we didn’t accidentally train on the
labels, (1) we re-ran the experiment several times on different datasets, (2) we copied the dataset into
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a new file, excluding any labels before re-running our algorithm with that file, and (3) one coauthor
independently replicated the findings on the Claude 3.5 Haiku base model using a different codebase.

4.2 Unsupervised Elicitation Fails when Concepts are not Salient

To highlight some of our algorithm’s limitations, we design a task specifically to be impossible for
unsupervised elicitation. Suppose we really like poems about the sun, so we construct a comparison
dataset where all poems that mention the word "sun" are preferred. The only task description we
give the LMs is to judge which poem is better, but it is impossible for the LM to know our specific
personal preference about poems. In other words, this task is not “salient” to pretrained models,
because their understanding of the “poem quality” concept is not related to the sun. To construct
the dataset, we use Claude 3.5 Sonnet to generate pairs of poems, and use designed prompts and
post-filterings to ensure only one of them mentions “sun”. Experiment results with Llama 70B are
shown in Figure 5. As expected, we find ICM performs no better than random guessing.

4.3 Eliciting Superhuman Capabilities

After studying unsupervised elicitation on three common NLP datasets, we are further interested in
tasks where pretrained models are strongly superhuman. To study this, we explore an author gender
prediction task using the Blog Authorship Corpus [27].2

Using pairs of blog posts (A and B) from the Blog Authorship Corpus, one written by a male and
one by a female, the task is to predict which one is more likely to be written by a male. We use the
simple asymmetry logical consistency: A > B contradicts B > A.

Figure 6: Results on gender prediction.

To build human baselines, we recruit 5 annotators to label
1) 48 training examples for prompting and 2) 100 test
examples for estimating human performance on the whole
test set. Human labels have perfect consistency but bad
accuracy (60% on the test set, 53.8% on the training set).

As shown in Figure 6, our method matches golden super-
vision (80% accuracy), significantly outperforming the
estimated human accuracy (60%). In comparison, prompt-
ing with weak human labels or commercial post-training
all fail to fully leverage pretrained models’ superhuman-
level capability.

4.4 Training an Assistant Chatbot without Supervision

Figure 7: Accuracy of reward models (left) and pairwise winrates of assistant policy models against
the human-supervised baseline (right). We train a Claude 3 Haiku-based reward model, using the
Alpaca data or the production data used for training publicly released Claude 3.5 Haiku. Next, we
optimize the Claude 3.5 Haiku pretrained model against our reward model to build an assistant policy.

2Our goal is not to improve AI performance at predicting author gender, but rather to study how well this
capability is already present in pretrained models.
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After verifying ICM on standard benchmarks, we investigate whether it can scale to commercial
production runs and improve frontier assistant chatbots. Specifically, we aim to train a helpful chat
assistant based on the Claude 3.5 Haiku pretrained model, without introducing any human preferences
or supervision labels whatsoever.

Reward Model Training. We use Claude 3 Haiku3 to generate unsupervised labels. We use the
task description “which response is more helpful, harmless, and honest?”. We sample a subset from
the production preference dataset for training the publicly released Claude 3.5 Haiku. This subset
consists of nearly 400K examples with a 64K token limit. We first use ICM to label 6K examples,
train an initial reward model (RM) to label the rest of the data, and then train the final unsupervised
RM. We also run the same process on Alpaca to serve as a baseline against this production data.

We conduct evaluations on Rewardbench [18], a widely-used challenging benchmark for RMs. Figure
7 (left) shows the results. First, the human-supervised RM trained on the production data significantly
outperforms the RM trained on Alpaca, due to its high-quality human labels and complex examples.
Consequently, surpassing the human-supervised RM trained on production data is much harder.
Nevertheless, our unsupervised RM still achieves higher accuracy (75.0% v.s. 72.2%).

Reinforcement Learning with Unsupervised RM. Using both the unsupervised and human-
supervised RM, we train two policies via reinforcement learning to create helpful, harmless, and
honest assistants. We train both policies on 20,000 RL episodes. We conduct head-to-head compar-
isons between two policies: each model’s responses are graded by the RM for training the publicly
released Claude 3.5 Sonnet model. As shown in Figure 7 (right), the policy trained with the unsu-
pervised RM achieves a 60% win rate. Both these policies lag severely behind the performance of
the publicly released Claude 3.5 Haiku, which achieves a much higher 92% win rate against the
human-supervised baseline. This is expected because the publicly released Claude 3.5 Haiku is
trained for much longer on a much larger dataset with a Claude 3.5 Haiku-based RM. Overall, these
experiments suggest that ICM can scale to commercial production runs.

5 Ablations

Comparing to randomly perturbed labels. Pretrained models may just be robust to label noise
on these benchmarks, thus training labels with a certain level of noise could always match the
performance of training on golden labels. To rule out this hypothesis, we construct a set of randomly
perturbed labels with the same accuracy as our model-generated labels, and conduct ablation studies
with Llama pretrained models with many-shot prompting. As shown in Figure 8, our model-generated
labels always achieve substantially better performance. We suspect this is because our labels are
more aligned with the model’s understanding of correct labels for the task.

Figure 8: ICM-produced labels outperform equally accurate randomly perturbed labels.

Evaluating robustness to worst-case initialization. It is possible that our algorithm could collapse
under bad initialization (e.g., all initial K labels are wrong), but we coincidentally never encounter
such scenarios in Sec. 4 because they happen rarely. We thus investigate ICM’s robustness against
different initializations:
• Golden: using golden dataset labels. This corresponds to a semi-supervised setting.

3This was an oversight on our part. Ideally, we would use the same model for reward model and policy.
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• Random: using random labels (our default setting).
• Worst: using entirely wrong labels.

Figure 9: Impact of initialization.

Figure 9 showcases results on TruthfulQA with the Llama 8B
model. We report the test accuracy using many-shot prompt-
ing. Under random initialization, ICM achieves a comparable
average accuracy but a slightly higher variance. Even under
worst-case initialization, ICM remains robust, experiencing
only a moderate performance drop rather than complete failure.
This is mainly due to its iterative nature: a few initial bad labels
would not degrade the performance significantly, as they can
be gradually corrected as the algorithm progresses.

Figure 10: Impact of logical consistency.

Ablating logical consistency. The logical consistency
term may be of limited value: ICM only introduces simple
and general logical consistency that can be applied to
many tasks, because determining fine-grained consistency
relationships across examples is challenging. Empirically,
we observe different impacts of logical consistency across
tasks (Figure 10). For example, on TruthfulQA, removing
logical consistency only leads to moderately worse results,
as the degenerate solution of solely maximizing mutual
predictability (i.e. assigning the same label everywhere)
happens rarely. In contrast, logical consistency is crucial
on Alpaca, since the degenerate solution almost always happens without that.

6 Related Work

Scaling beyond Human Supervision. Recent work has shown diverse failure modes of post-training
LMs with unreliable human supervision. For example, LMs can learn to reward-hack human-designed
supervision signals [6] or even real humans themselves [31]. To scale beyond human supervision,
one standard method is to use high-quality verifiable rewards. For example, in math, we can match
model outputs with existing ground truth solutions [15]. Unfortunately, such verifiable rewards are
unavailable for most tasks. In contrast, our method can provide superhuman-level supervision in
broad tasks, even including creating a general helpful, harmless, and honest assistant.

Evidence of Latent Capabilities in LMs. Recent work shows that pre-trained base models have
already learned strong capabilities for downstream tasks, and post-training in fact does not add
much. For example, pretrained models can achieve a comparable or even higher pass@k than their
post-trained counterparts when k is large enough, even when post-training is done with verifiable
rewards [32]. Similarly, pretrained and post-trained models perform nearly identically in decoding,
while most distribution shifts occur with stylistic tokens such as discourse markers [19]. When
inspecting model latent representations, recent work also finds that LMs encode strong signals of
reasoning correctness [33] or hallucination [17, 13]. However, despite prior empirical evidence about
LMs’ latent capabilities, they still fail to elicit them effectively.

Unsupervised Elicitation of LMs. CCS [9] is one of the most representative works for unsupervised
elicitation, which works by solely using simple logical consistency to find latent knowledge. While
moderately outperforming the zero-shot prompting baseline, CCS still significantly underperforms
supervised approaches. As argued in [12], CCS, as well as other unsupervised approaches, often
cannot find knowledge, because there are many other prominent features that can satisfy logical
consistency properties. Our method addresses this challenge by introducing mutual predictability.

Several concurrent studies explore unsupervised elicitation by minimizing label entropy [34, 1],
differing from our scoring function. Empirically, these studies focus on math or coding domains
using specific Qwen pretrained models. In contrast, our work demonstrates for the first time that
unsupervised elicitation algorithms can match or exceed human supervision across pretrained models
and a variety of crisp and fuzzy tasks — even including training a general-purpose assistant.

Unsupervised elicitation can also be thought of as a special case of weak-to-strong generalization
[8, 16]: while they try to use weak human supervision to elicit strong LMs, we seek to ignore the
weak human supervision altogether.
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7 Discussion

The role of logical consistency. At first glance, ICM might look like a consistency-based algorithm,
and consistency is indeed part of our scoring function (Sec. 2.2). However, as Sec. 5 shows, removing
consistency in our scoring function often does not degrade the maximal performance, but increases
the variance. Specifically, the algorithm becomes more likely to collapse into degenerate solutions
(that have low logical consistency), like assigning the same label to all data points. Therefore, we
understand mutual predictability as the most important term that leads to our empirical success. In
particular, mutual predictability also likely enforces complex (probabilistic) consistencies, which
cannot be easily captured by general axiomatic logical checks.

Unsupervised elicitation as an alignment method. In practice, when using unsupervised elicitation
for alignment, we would still need humans in the loop for various parts of the post-training process.
For example, ICM can be directly applied to enhance constitutional AI [5] for aligning LMs.
Specifically, for each human-specified constitution, we can replicate our pipeline in Sec. 4.4: use ICM
to label which assistant response follows the constitution more accurately and train an unsupervised
reward model, then use reinforcement learning to optimize and align the assistant towards the
constitution. Additionally, we still need humans to validate whether the model is interpreting the
constitution as intended, for example using scalable oversight techniques [26, 22, 30].

Limitations. Our algorithm has two important limitations: (1) As shown in Sec. 4.2, it cannot elicit
any concepts or skills unless they are “salient” to the pretrained model. (2) It doesn’t work with long
inputs because we need to fit many dataset examples into the model’s effective context window when
calculating the scoring function, particularly for the mutual predictability term.

Conclusion. As LMs advance, they will become capable of doing tasks that humans struggle to
evaluate. Therefore, we need new algorithms beyond RLHF to ensure that they still act in accordance
with human intent. Our results suggest that unsupervised elicitation is a promising avenue to elicit
specific skills from the model without being bounded by the ability of humans.
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Appendix

A Additional Implementation Details

A.1 Hyperparameters

We set the initial temperature T0 = 10, the final temperature Tmin = 0.01, and the cooling rate
β = 0.99. For the coefficient α, we always start with α = 50. While a large α usually yields labels of
higher quality, it may excessively restrict the acceptance criteria, causing the algorithm to frequently
reject new labels. Therefore, we may adjust α to a smaller value (20 or 30) based on the search speed
on the training data, without reference to any validation data.
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A.2 Data Statistics

Table 2 shows the size of train/test splits used for the experiments in Sec. .

Table 2: Data size.
Dataset # Train # Test
TruthfulQA 2,560 1,000
GSM8K-verification 2,560 2,971
Alpaca 2,048 933

B Compute Costs

ICM is one form of inference-time scaling. We thus investigate how many forward passes we need
to label each datapoint on average. Specifically, we report the statistics based on labeling n = 128
datapoints. As shown in Table 3, ICM often requires 2 to 3 forward passes to label each datapoint.

Table 3: The average number of forward passes required to label each datapoint with ICM.
Dataset Avg. # Forward
TruthfulQA 2.5
GSM8K-verification 3.9
Alpaca 2.0

C Human Annotation

In Sec. 4.3, we study an author gender prediction task. To establish a human baseline, we recruit 5
annotators from upwork.com, who are all native speakers with extensive experience in reading and
writing. Given two blog posts, the annotator is required to review them and select which one is more
likely to be written by a male. Overall, we collect 5 human labels for each example.
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